Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Elofsson, Arne (Ed.)Hydrogen-Deuterium Exchange Mass Spectrometry (HDX-MS) is a powerful protein characterization technique that provides insights into protein dynamics and flexibility at the peptide level. However, analyzing HDX-MS data presents a significant challenge due to the wealth of information it generates. Each experiment produces data for hundreds of peptides, often measured in triplicate across multiple time points. Comparisons between different protein states create distinct datasets containing thousands of peptides that require matching, rigorous statistical evaluation, and visualization. Our open-source R package, HDXBoxeR, is a comprehensive tool designed to facilitate statistical analysis and comparison of multiple sets among samples and time points for different protein states, along with data visualization.more » « less
- 
            Elofsson, Arne (Ed.)Abstract MotivationProtein sequences can be broadly categorized into two classes: those which adopt stable secondary structure and fold into a domain (i.e. globular proteins), and those that do not. The sequences belonging to this latter class are conformationally heterogeneous and are described as being intrinsically disordered. Decades of investigation into the structure and function of globular proteins has resulted in a suite of computational tools that enable their sub-classification by domain type, an approach that has revolutionized how we understand and predict protein functionality. Conversely, it is unknown if sequences of disordered protein regions are subject to broadly generalizable organizational principles that would enable their sub-classification. ResultsHere, we report the development of a statistical approach that quantifies linear variance in amino acid composition across a sequence. With multiple examples, we provide evidence that intrinsically disordered regions are organized into statistically non-random modules of unique compositional bias. Modularity is observed for both low and high-complexity sequences and, in some cases, we find that modules are organized in repetitive patterns. These data demonstrate that disordered sequences are non-randomly organized into modular architectures and motivate future experiments to comprehensively classify module types and to determine the degree to which modules constitute functionally separable units analogous to the domains of globular proteins. Availability and implementationThe source code, documentation, and data to reproduce all figures are freely available at https://github.com/MWPlabUTSW/Chi-Score-Analysis.git. The analysis is also available as a Google Colab Notebook (https://colab.research.google.com/github/MWPlabUTSW/Chi-Score-Analysis/blob/main/ChiScore_Analysis.ipynb).more » « less
- 
            Elofsson, Arne (Ed.)As sequence and structure comparison algorithms gain sensitivity, the intrinsic interconnectedness of the protein universe has become increasingly apparent. Despite this general trend, β-trefoils have emerged as an uncommon counterexample: They are an isolated protein lineage for which few, if any, sequence or structure associations to other lineages have been identified. If β-trefoils are, in fact, remote islands in sequence-structure space, it implies that the oligomerizing peptide that founded the β-trefoil lineage itself arose de novo . To better understand β-trefoil evolution, and to probe the limits of fragment sharing across the protein universe, we identified both ‘β-trefoil bridging themes’ (evolutionarily-related sequence segments) and ‘β-trefoil-like motifs’ (structure motifs with a hallmark feature of the β-trefoil architecture) in multiple, ostensibly unrelated, protein lineages. The success of the present approach stems, in part, from considering β-trefoil sequence segments or structure motifs rather than the β-trefoil architecture as a whole, as has been done previously. The newly uncovered inter-lineage connections presented here suggest a novel hypothesis about the origins of the β-trefoil fold itself–namely, that it is a derived fold formed by ‘budding’ from an Immunoglobulin-like β-sandwich protein. These results demonstrate how the evolution of a folded domain from a peptide need not be a signature of antiquity and underpin an emerging truth: few protein lineages escape nature’s sewing table.more » « less
- 
            Elofsson, Arne (Ed.)Abstract Motivation Procedures for structural modeling of protein–protein complexes (protein docking) produce a number of models which need to be further analyzed and scored. Scoring can be based on independently determined constraints on the structure of the complex, such as knowledge of amino acids essential for the protein interaction. Previously, we showed that text mining of residues in freely available PubMed abstracts of papers on studies of protein–protein interactions may generate such constraints. However, absence of post-processing of the spotted residues reduced usability of the constraints, as a significant number of the residues were not relevant for the binding of the specific proteins. Results We explored filtering of the irrelevant residues by two machine learning approaches, Deep Recursive Neural Network (DRNN) and Support Vector Machine (SVM) models with different training/testing schemes. The results showed that the DRNN model is superior to the SVM model when training is performed on the PMC-OA full-text articles and applied to classification (interface or non-interface) of the residues spotted in the PubMed abstracts. When both training and testing is performed on full-text articles or on abstracts, the performance of these models is similar. Thus, in such cases, there is no need to utilize computationally demanding DRNN approach, which is computationally expensive especially at the training stage. The reason is that SVM success is often determined by the similarity in data/text patterns in the training and the testing sets, whereas the sentence structures in the abstracts are, in general, different from those in the full text articles. Availabilityand implementation The code and the datasets generated in this study are available at https://gitlab.ku.edu/vakser-lab-public/text-mining/-/tree/2020-09-04. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
- 
            Elofsson, Arne (Ed.)Abstract Motivation Cryoelectron tomography (cryo-ET) visualizes structure and spatial organization of macromolecules and their interactions with other subcellular components inside single cells in the close-to-native state at submolecular resolution. Such information is critical for the accurate understanding of cellular processes. However, subtomogram classification remains one of the major challenges for the systematic recognition and recovery of the macromolecule structures in cryo-ET because of imaging limits and data quantity. Recently, deep learning has significantly improved the throughput and accuracy of large-scale subtomogram classification. However, often it is difficult to get enough high-quality annotated subtomogram data for supervised training due to the enormous expense of labeling. To tackle this problem, it is beneficial to utilize another already annotated dataset to assist the training process. However, due to the discrepancy of image intensity distribution between source domain and target domain, the model trained on subtomograms in source domain may perform poorly in predicting subtomogram classes in the target domain. Results In this article, we adapt a few shot domain adaptation method for deep learning-based cross-domain subtomogram classification. The essential idea of our method consists of two parts: (i) take full advantage of the distribution of plentiful unlabeled target domain data, and (ii) exploit the correlation between the whole source domain dataset and few labeled target domain data. Experiments conducted on simulated and real datasets show that our method achieves significant improvement on cross domain subtomogram classification compared with baseline methods. Availability and implementation Software is available online https://github.com/xulabs/aitom. Supplementary information Supplementary data are available at Bioinformatics online.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
